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The Balmer Series in Hydrogen and Deuterium 
 

Introduction: 
 
    In 1885 a Swiss schoolteacher named Johannes Balmer observed that the wavelengths of the visible 

spectral lines of the hydrogen atom, known then to have the simplest spectrum in the periodic table, could be 

expressed very accurately by the simple formula 

 
 
           n = 3,4,5,…   Eqn A   

 
 

where R is equal to 109,678 cm
-1

. Not only did Balmer correctly describe the sequence of lines which carries 

his name, but he also suggested that other sequences of spectral lines could be found which would correspond 

to wavelengths predicted by the same equation with the 2
2
 replaced by 1

2
, 3

2
, 4

2
, etc. Subsequent 

investigations in the far ultraviolet and infrared regions confirmed his predictions with remarkable accuracy. 

 

The simplicity of the hydrogen spectrum is due to the fact that it contains only one electron, and that the 

potential felt by the electron is described precisely by Coulomb’s law. In quantum mechanical terms, the 

energy levels of the hydrogen atom depend only upon the eigenvalues of the radial part of the wave function, 

not the angular parts describing the atom’s angular momentum. This Coulomb degeneracy disappears in 

atoms containing more than one electron, where the nuclear potential felt by an electron is partially screened 

by the other electrons.  
 

The hydrogen atom is the simplest quantum-mechanical system. It consists of an electron bound, due to the 

Coulomb force, to a proton. It is characteristic of bound quantum-mechanical systems that their total energy 

cannot have any value, but that the system is found in one of a discrete set of energy levels, or states. 

Transitions of the system between these states may occur. Such transitions must satisfy the basic conservation 

laws of electric charge, energy, momentum, angular momentum, and the other relevant symmetries of nature.  

 

Transition from a higher energy state to a state with less energy can occur for an isolated system, and the 

larger the probability for this transition, the shorter the "lifetime" of that excited state. During such 

spontaneous transitions of a quantum-mechanical system to a lower energy state, a quantum of radiation, or 

one or more particles, can be emitted, which will carry away the energy lost by the system (after recoil effects 

have been taken into account). In the presence of a radiation field the quantum-mechanical system can either 

gain energy from the field and change into a state with higher energy, or lose energy to the field and revert to 

a lower energy state. For all quantum-mechanical systems there exists a lowest energy state, the ground state.  

 

By observing the quanta of radiation emitted during such transitions, we gain information on the energy levels 

involved. The typical example is optical spectroscopy, which consists of the accurate determination of the 

energy of the light quanta emitted by atoms. Infrared spectroscopy deals mainly with the quanta emitted by 

molecules, nuclear spectroscopy with the quanta emitted in nuclear transitions, and so on. In nuclei, however, 

the separation between energy levels is much larger, so that the emitted quanta of electromagnetic radiation 

lie in the gamma ray region; thus different techniques are employed for detection and measurement of their 

energy. It is also very common for nuclei to decay from one energy state to another by the emission of an 

electron and neutrino (beta decay) and for certain heavier nuclei by the emission of a helium nucleus (alpha 

particle). Similar processes take place in the interactions or decay of the elementary particles. The idea of 

energy levels and their structure for the hydrogen atom was first introduced by Niels Bohr in 1913. However, 

a complete theoretical interpretation had to wait until the introduction of the Schrodinger equation in 1926. 

Even then, for theory to agree with observation it is necessary to include additional small effects such as the 

fine and hyperfine structure, relativistic motion, and other higher order corrections. These corrections are 

derived using the theory of quantum electrodynamics (QED) so that today we can theoretically calculate the 

energy levels of the hydrogen atom to the amazing accuracy of 1 part in
1110 .  
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Bohr theory: 
 

We will use the Bohr theory to predict the hydrogen energy levels, because it is so simple, even though it 

assigns the incorrect angular momentum to the states. The postulates of the Bohr theory are (a) that the 

electron is bound in a circular orbit around the nucleus such that the angular momentum is quantized in 

integral units of Planck’s constant (divided by 2 ); namely, ( 2 )pr mvr n h n     and (b) that the 

electron in this orbit does not radiate energy, unless a transition to a different orbit occurs. We can then 

calculate the radii of these orbits and the total energy of the system, potential plus kinetic energy of the 

electron. The attractive force between the electron (charge - e ) and the proton (charge + e ) or a nucleus (of 

charge + Ze ) is the Coulomb force, which is set equal to the centripetal force.  

 

The total energy of the electron is 

  

 E T V   

 

 

2
2

0

1 1

2 4

Ze
mv

r
   (1) 

 

Here m , v , and e  are the electron’s mass, velocity, and electric charge, Ze  is the charge on the nucleus, 

and r  is the "orbital radius" of the electron
1
. The potential energy, of course, is just the attractive Coulomb 

potential between the electron and the nucleus. We can relate the velocity v  to the other variables by using 

F ma , where F  is the Coulomb force and a  is the centripetal acceleration. That is  

 

 

2 2

2

0

1

4

Ze v
m

r r
  (2) 

which implies that  

 

2
2

0

1 1

4

Ze
v

m r
  (3) 

 

If we introduce this result into Eq. (1) we obtain  

 

 

2 2 2

0 0 0

1 1 1 1 1 1

2 4 4 2 4 2

Ze Ze Ze
E V

r r r  
          (4) 

 

At this point we can impose the Bohr quantization condition  

 

 r n
mv

  (5) 

 

to eliminate v  in Eq. (3). Here n  is the principal quantum number. We obtain 

  

 

2 2 2

2 2

0

1 1

4

n Ze

m r m r
  (6) 

or  

                                                           
1
We assume that the nucleus is infinitely heavy. 
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Inserting this result in Eq. (4) we find for the total energy  

 

 

2 4

2 2

0

1

2(4 )
n

mZ e
E

n

 
   

 
 (8) 

 

For the hydrogen atom where 1Z  , the expression in brackets in Eq. (8) equals 13.6 eV. This is the energy 

required to take an electron in the ground state (n = 1) and separate it from the nucleus completely ( 0E  ). 

We refer to it as the binding energy of the hydrogen atom. It is customary to introduce the Rydberg constant 

(wave number) through  

 
2

1
nE hcR

n
   (9) 

where  

 
110973731 534R m

    (10) 

and thus  

 1 13 6057E eV     (11) 

 

Furthermore, from Eq. (1.11) we can write for the radius of the orbits in hydrogen  

 

 
2

nr n a  (12) 

 

with  

 

2
100

2

4
0 5291772 10a m

m e

 

      (13) 

 

called the Bohr radius.  
 

  

Figure 1.  Energy-level diagram of the hydrogen atom according to the simple Bohr theory. 
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The energy levels of the hydrogen atom that we derived can be represented by Fig. 1. However, the lines 

observed in the spectrum correspond to transitions between these levels; this is shown in Fig. 2, where arrows 

have been drawn for all possible transitions. The energy of a line is given by  

 

 
2 2

1 1
if

f i

E hcR
n n



 
    

 

 (14) 

 

where the subscripts i  and f  stand for initial and final state, respectively.  

Since the frequency of the radiation is connected to the energy of each quantum through  

 

 E h  

one finds that  

 
1 E

c hc




   

 

 

 

  

Figure 2. Transitions between the energy levels of a hydrogen atom. The lines L L  , etc., belong to the Lyman 

series, B B    etc., to the Balmer series, and P P  , etc., to the Paschen series, and so forth. 

 

 

and  
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 (15) 

 

Indeed, the simple expression of Eq. (15) is verified by experiment to a high degree of accuracy.  

 

From Eq. (14) (or from Fig. 1) we note that the spectral lines of hydrogen will form groups depending on the 

final state of the transition, and that within these groups many common regularities will exist; for example, in 

the notation of Fig. 1  

 

 ( ) ( ) ( )L L B        (16) 

 

If 1fn  , then  

 

2

1 2
91 1 2

1

i
i i

i

n
nm n

n


 
   

 
 (17) 

 

and all lines fall in the far ultraviolet; they form the (so-called) Lyman series. Correspondingly if 2fn  , 

then  

 

2

2 2
364 4 3

4

i
i i

i

n
nm n

n


 
   

 
 (18) 

 

and all lines fall in the visible part of the spectrum, forming the Balmer series. For 3fn   the series is named 

after Paschen and falls in the infrared.  

 

More advanced: 
 

A quantum description of the hydrogen atom starts with the form of the potential and kinetic energies of the 

bound electron and proton: 

 
 
 
 
 
 
In terms of reduced coordinates, ignoring center-of-mass motion, the kinetic energy can be expressed as 
 
 
 
 
Where   
 
      (the reduced mass) 
 
 
 
 
 
 
So the Hamiltonian is 
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The Schrödinger equation for the hydrogen atom is: 

 

H E   
Or: 
 

2 2
2

2

0

1

2 4
r

r

L e
p E

m r r
  
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This equation can be simplified somewhat by examining the symmetries of this problem. Because the 

Coulomb potential is a central field (a function of r only), angular momentum is a constant of the motion and 

the hydrogen wave function should be an eigenfunction of both L
2
 and Lz. In spherical coordinates, the 

eigenfunctions of L
2
 and Lz alone are the spherical harmonics:    , . im m

lm lY const e P    , where 

 m

lP   s an associated Legendre function and the constant is determined by normalization. The eigenvalue 

of the operator L
2
 acting on  ,lmY    is  2 1l l  . 

 

Because pr operates on r alone, if we now write the hydrogen wave function as a product of a radial function 

and a spherical harmonic, 

 

the Schrödinger equation reduces to a differential equation in r alone: 

 
     

2 2
2

2

0

11

2 4
r
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l l e
p R r R r ER r
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or, writing out 
2

rp  explicitly, 

                                 
 2 2

2

2 2

0

11 1

2 2 4r r

l ld dR e
r R R ER

m r dr dr m r r

  
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Bound states correspond to values of E < 0. Solutions to this radial equation 

exist only for discrete values of E given by (see, for example, Saxon, Q.M., sec. 9.5): 

4

2 2 2

08

r
n

e m
E for n l

n
                                     (19) 
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where n, the radial quantum number, is an integer greater than l. The radial function R is equal to 
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where  

2

0
0 2

4
0.529

r

a
m e


                                    

is the Bohr radius of hydrogen, and  2 1l

n lL x

  is an associated Laguerre polynomial. 

 A photon emitted by an atom must have an energy hv equal to the difference between two energy 

levels. Because the frequencies v of photons emitted by a hydrogen atom in an excited state are equal to c/λ, 

the energies En of Eq. (19) provide a theoretical explanation of Balmer's empirical formula: 

     
2 2

1 1 1

2
R

n

 
  

 
              (20) 

 

The constant R is seen to be 1/hc times the coefficient of 1/n
2
- in Eq. (19), or 

 

 

and is called the Rydberg constant for hydrogen. (The constant R   shown in tables of universal physical 

constants assumes the nuclear mass mn is infinite.) An energy level diagram of the hydrogen atom is shown 

in Fig. 1 with transitions corresponding to the Balmer, Lyman (2
2
 replaced by 1

2
 in Eq. (20)), and Paschen 

(2
2
 replaced by 3

2
) series.  

 Further refinements to the quantum description of hydrogen include the hyperfine coupling between 

the nuclear and electron spins, and relativistic effects (the Lamb shift). When these corrections are added to 

the treatment above, the energy levels of hydrogen can be predicted with an accuracy exceeding one part in 

10
8
. 
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Experiment on the Hydrogen Spectrum 

 

A. GENERAL 

Measurements of the frequency of the radiation emitted by an excited hydrogen atom are based on 

either interference, as when a plane grating is used, or variation with wavelength of the refractive 

index of certain media, as when prism spectrometers are used. Prism spectrometers are obviously 

limited to wavelength regions for which they are able to transmit the radiation; for example, in the 

infrared, special fluoride or sodium chloride prisms and lenses are used; in the ultraviolet, the 

optical elements are made of quartz. Also, the sensitivity of the detectors varies with wavelength, so 

that different types are used in each case (thermopile, photographic emulsion, phototube, etc.). 

 In this laboratory a high resolution Czerny Turner monochromator is used. You will need to 

understand how a diffraction grating works and how a spectrograph works, before you undertake 

this experiment.  This instrument is a variant of the ordinary reflection grating spectrometer. READ 

AND EXPLORE: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/gratcal.html  Also read the 

“related material” on the 122 web page for this experiment. Then read Parkinson’s article at the end 

of this lab manual.   The Czerny Turner monochromator’s prime virtue is that its combined 

mechanical and optical arrangement yields a nearly linear relationship between the mechanical 

translation of the adjustment screw (measured on the 4 digit counter) and the wavelength 

transmitted by the instrument. Hence, if one experimentally establishes this relationship using 

known wavelengths, it is possible to determine unknown wavelengths with reasonably high 

accuracy. The graph which displays the relationship between micrometer readings and wavelength 

is known as a dispersion curve. In order to provide visual identification of the known wavelengths 

which are used to calibrate this instrument, a high intensity mercury arc light source is provided with 

the equipment. The intensity of this source is sufficiently high that one is able to observe the color of 

light reaching the exit slit. In this manner it is possible to obtain a coarse determination of each point 

necessary to determine the dispersion curve before obtaining the exact point electronically. The 

following tabulation of known prominent mercury lines is given to calibrate the instrument. 

Yellow  (doublet)       5791 x 10-10m.                   Blue            4358 x 10-10  

Yellow                        5770 x l0-10m.                   Violet           4078 x 10-10m 

Green                        5461 x l0-10m.                    Violet           4047 x l0-10m 

Blue-Green (weak)    4916 x l0-10m.                    Ultraviolet    3663 x l0-10m 

                                                                            Ultraviolet    3650 x l0-10m 

 

Once a dispersion curve is prepared, it is possible to scan manually and motor-driven through the 

visible region of the hydrogen spectrum and determine the wavelength of those lines comprising the 

Balmer series. Note: The wavelengths listed in most tables are given for dry air at a pressure of 760 

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/gratcal.html
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mm Hg. However, any theoretical calculation such as Eq. (A) predicts the vacuum wavelengths. 

The refractive index of air at STP is nair = 1.00029. 

 

B. Procedure 

Prepare a least-squares dispersion curve for the Czerny-Turner monochromator using known 

mercury wavelengths. Once this is known, the measurements can be made on the first four or 

five members of the Balmer series, which lie in the visible region. Test Eq. (A) and obtain the 

Rydberg constant. Note that  

 

so that from least squares, 

 

 

where 

                           

 

 

Obtain both RH and RD, the Rydberg constants for hydrogen and deuterium. From the difference 

between, RH and RD which is most accurately obtained from a single determination of the fine-

structure splitting between the red Balmer α lines for the two isotopes, obtain the mass ratio of 

the isotopes. This will require using the narrow 15µ slits. (Please do not attempt to adjust the slit 

jaws.) For observing this doublet in the mid-thirties, Harold Urey received the Nobel prize. 

Warning: The discharge tubes require the use of high voltage. Necessarily, caution must be 

observed to prevent physical contact with the electrical connections. In addition, the mercury 

source emits light in the near ultraviolet, which is harmful to the human eye. Consequently, 

avoid looking directly at the source.  

 
Warning: The slit assemblies have a preferred orientation! When you set up the monochromator 

(spectrograph), be sure that both of the slits are the same size and that they are oriented with 

the slit jaws pointed out from the monochromator – otherwise they slit assemblies will not fully 

nest in their slots.     
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A sample recording of a typical hydrogen spectrum using a chart recorder is shown for your 

enlightenment. 

 

A recorded trace of the Hydrogen spectrum using a motor driven Czerny-Turner 

monochromator. Principal lines of the Balmer Series are indicated.    
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GENERAL GUIDE  

 

Equipment for the experiment is shown below 

 

                H-D light source               Lens        Beam chopper      Sensor         Monochromator 

          

 
 
 

In the upper left is Hydrogen light source. Light is focused by the lens into the inlet slit on the left 
end of the monochromator and passes back through the exit slit into the aluminum box housing the 
photodiode light sensor. The sensor output is amplified and sent to the lock-in amplifier, off the 
image to the right. 
 
 
 
 
 

The Mercury light source is a self contained unit. This 
source is used as a standard to obtain data for the 
creation of a dispersion curve to correct for wavelength 
errors in the monochromator readings. Caution; the 
mercury source emits light in the near ultraviolet, which is 
harmful to the human eye. Consequently, avoid looking 
directly at the source. 
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The Hydrogen-Deuterium light source is used with 
an external high voltage (5000 VAC) power supply. 
All electrical contact points are insulated, but care 
should be exercised in its use, and the power 
supply should always be turned off before handling 
the source lamp. This source will be used for taking 
the actual experimental data. Be sure to turn on a 
fan aimed at the lamp.  Otherwise the tube will 
overheat and the line emission intensity will drop. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The experiment uses a Czerny-Turner grating monochromator made by Jerrell Ash.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Scan motor control               Wavelength readout           Speed ranges and manual scan  
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The optical path: light from the source, focused by 
a lens at A entering through the inlet slit at B and 
reflecting off of mirror C forming the parallel beam 
to the grating D then on to mirror E where only the 
selected wavelength light goes through the exit slit 
F and reaches the light sensor at G.  Be careful 
when setting up the external optics A that you 
match the required beam divergence (B-C). 
 
 
 
 
                                                                                                                      Sensor Housing  
                                                           Inlet slit frame 
                            Chopper vibrating reed 
 
 
 
After exiting the lens at A, light passes by the reed 
(which is alternately on and off the front of the slit), 
through the opening in the slit housing and through 
the slit. After passing through the optics, and 
diffracting off the grating, the light of a particular 
wavelength comes to a focus at the exit slit and 
then exits into the sensor housing where it is photo-
converted into electrons, amplified, and this voltage 
is sent to the lock-in amp (see below.) 
 
 
 
 
 
 
 
 
The chopper reed in the inlet slit path is used to 
chop the light, on and off, moving the photodiode 
output “signal” from nearly zero frequency up to the 
chopper frequency where the amplifier is less noisy 
-- allowing more sensitive readings. The  Lock-in 
Amplifier takes the output of the sensor, bandpass 
filters it passing AC signals near the beam 
chopping frequency (60 Hz), multiplies that signal 
times the reference sine wave from the chopper, 
low-pass filters the product (averaging for 
selectable time constants) and then displays it on 
the front panel meter.  See discussion and photos 
below. Show in your lab book mathematically 
how this low pass product of signals increases 
the signal-to-noise ratio. 
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 USEFUL HINTS 
 
Determining the Dispersion curve 
 
The mechanical digital readout on the monochromator is fairly accurate, but the reading may be off 
by a few Angstroms, and the error will vary across the full range, due to a number of factors. This is 
a form of systematic error.  Before taking data you must calibrate this offset error vs wavelength. A 
source with emission lines at known wavelengths can be scanned and the data used to calibrate 
the monochromator readout. The differences between the known line wavelengths and the 
measured wavelengths on the monochomator readout can be used to generate what is called a 
dispersion curve which will show how error in the device readings are dispersed about the ideal 
linear curve. This curve can be used to correct wavelength data taken on subsequent runs with the 
system. For our standard, we will use a mercury source.  Below are listed the 9 prominent mercury 
lines that you should find during a scan.  

Yellow  (doublet)       5791 x 10-10m.                   Blue            4358 x 10-10  

Yellow                        5770 x l0-10m.                   Violet           4078 x 10-10m 

Green                        5461 x l0-10m.                    Violet           4047 x l0-10m 

Blue-Green (weak)    4916 x l0-10m.                    Ultraviolet    3663 x l0-10m 

                                                                            Ultraviolet    3650 x l0-10m 
 
A simple, projected grating, line spectrum from the Hg source shows the two yellow lines, the green 
and the blue line along with a faint violet 4045 x 10-10m line. The other lines are too dim to be seen 
in the photo, but can be found by the monochromator. The lines will all be strong enough to be 
detected by the photocell.  The Hg spectrum with wavelengths indicated in Angstroms is shown at 
bottom of page. You are calibrating your HD experiment, so you must use the same 15µm slits! 
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There are both 15µm and 130µm slits with the monochromator. You must first align the optics to 
maximize the light through the spectrograph. To get maximum light initially, we suggest you place 
the 130 µm slits into the slit housing (slits oriented outwards!) and align the source and lens to focus 
on the inlet slit and project light onto the first mirror. Be sure there is a coarse slit covering the exit 
hole in the source lamp enclosure. Turn on the Hg source lamp and wait a minute for it to warm up.  
 
In order to see where the light lands inside, place  
a piece of white paper (a business card works 
well) in front of the slit housing, behind the 
chopper reed, and move the lens and light 
source to focus the vertical light beam on the 
paper’s surface. Remove the paper and check 
to see that light is entering the slit.  
 
Once you have achieved optimal alignment 
using the wide slit you can probably go ahead 
and set up for the high spectral resolution 
required for the HD scan. The increased 
resolution necessary will require using the 
narrow 15µ slits rather than the 130µ slits. 
Why? The 130µ slits can be lifted out of the slit 
housing and the 15µ slits dropped in place. 
Beware that the slit holders have a special 
orientation! (Do not attempt to adjust the slit 
jaws.) If optical alignment is not good enough 
for the lock-in amplifier to produce a useful 
signal of about 500 millivolts, you will have to 
make a more accurate alignment of the light 
path. This is always the case. 
 
To make a better alignment, lift the cover from the 
monochromator and place a white card in front of the first 
mirror. Replace the cover and prop up the slit end with the 
“special tool” shown in the photo. Now turn off the room 
lights (after checking with others in the room) and adjust the 
lens and source for the maximum amount of light on the 
card. Remove the card (past experience has proven that the 
system will not operate correctly if the card is left in place  ;) 
and replace the monochromator cover. 
 
At this point you should connect the scope to 
the same signal that is going into the lock-in 
amplifier so that you can see the waveform.   
Note that it is not a perfect sine or triangle wave 
at the chopper frequency of 60 Hz, but instead 
has an additional component at twice that 
frequency. Can you think of why?   Hint: turn off 
the chopper at see what happens. 
 
Peak up the optical alignment by maximizing 
the signal amplitude on the scope as you adjust 
the xyz position of the source and optics.  
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The monochromator control panel is shown below. Scanning can be done by either motor driven or 
manual (hand operated) methods. To the far left of the panel is the motor control. Actual motor 
control consists of Stop, Longer wavelength, and shorter wavelength scan directions. If the drive 
mechanism reaches its operational limits, it will stop and the scan limit lamp will light. The 
wavelength meter is a simple mechanical meter that displays Angstroms. The right side of the panel 
has the speed select and manual scan control. Speed ranges and manual control are selected by 
detented positions of the push/pull control shafts as called out on the chart. 
 
 
 
 
 
 
 
 
 
 
 
Scanning arm movement is done by way of a lead screw and nut driven through a spur gear 
reducer mechanism. The push/pull shafts on the panel engage the appropriate gears for the 
selected speed. The picture here shows the somewhat fragile mechanism with a number of bronze 
gears. These are straight cut spur gears with no special tooth design to allow meshing them easily. 
Changing the speeds can be difficult at times. Do not use force; seek help if gear selection causes 
problems. Do not change speeds with the 
motor running. With the Hi-Lo shift in the middle 
position, the scan speed knob is used for 
manual scanning. The lead screw and nut will 
have some dead space when the rotation of the 
lead screw is reversed.  This is called “back 
lash.” There is a back lash compensation 
mechanism included, but it is not perfect. The 
wavelength readout for a given line will be 
slightly different when scanning towards longer 
wavelengths that it will be scanning in the 
shorter wavelength direction. The readout could 
vary by as much as 2 or 3 Angstroms due to 
backlash. It is best to take all data while 
scanning in the same direction. 
 
The easiest way to do a scan through a line or doublet is to run the monochromator to the short 
wavelength end of a narrow wavelength band spanning the line or doublet, beyond the first spectral 
line of interest and then scan back in the opposite (increasing wavelength) direction. You can 
experiment with the various power and manual scan speeds to find out what works best for you.  
 
However, for your calibration using the Hg tube, we recommend manual (in one direction, 
increasing wavelength) scans in the vicinity of the known Hg emission lines.  Then at the peak of 
the emission line read the wavelength reading on the mechanical counter to fractional angstroms. 
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Since you are chopping the light beam at 60 Hz, the actual signal out of the monochromator (see it 
on the oscilloscope!) is shown on the meter on the front of the SRS SR530 lock-in amplifier.  
 
With no light into the monochromator, the lock-in amplifier should be set to read zero. As lines are 
found while scanning, the amplifier gain should be set to avoid overload. The maximum reading on 
the amplifier meter coincides with the peak of the line being scanned.  Finally, you will have to 
experiment with the phase offset of each of the lock-ins, to maximize the signal from any source.  
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Monochromator Dispersion Curve
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Manually scan along the monochrometer’s range noting the wavelengths where the line peaks 
occur. Take this data and match it to the known line wavelengths to create the dispersion curve for 
the monochromator. Our test run for both scan directions provided the data below with dispersion 
values and chart. Your data may look different due to periodic maintenance of the monochromator. 
 
 

Known Experimental values Dispersion values 

  
Going 

Up 
Going 
Down 

Going 
Up 

Going 
Down 

          

3650 3637 3640 13 10 

3663 3650 3652 13 11 

4047 4032 4034 15 13 

4078 4064 4066 14 12 

4358 4344 4347 14 11 

4916 4907 4909 9 7 

5461 5461 5463 0 -2 

5770 5776 5778 -6 -8 

5791 5798 5800 -7 -9 
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Determining the Balmer Series lines 
 
 
Once a dispersion curve is prepared, it is possible to scan manually and motor-driven through the 
visible region of the hydrogen and deuterium spectrum and determine the wavelength of those lines 
comprising the Balmer series. Note: The wavelengths listed in most tables are given for dry air at a 
pressure of 760 mm Hg. However, any theoretical calculation such as Eq. (3) predicts the vacuum 
wavelengths. The refractive index of air at STP is nair = 1.00029. 

 
 
Scanning is done in the same way that was used to determine the 
dispersion curve. The increased resolution necessary will require 
using the narrow 15µ slits rather than the 130µ slits. The 130µ 
slits can be lifted out of the slit housing and the 15µ slits dropped 
in place. (Please do not attempt to adjust the slit jaws.) For 
observing this doublet in the mid-thirties, Harold Urey received the 
Nobel prize. 
 
 
 
 
Warning: The hydrogen-deuterium discharge tube requires the 
use of high voltage. Necessarily, caution must be observed to 
prevent physical contact with the electrical connections.  
 
Replace the Hg source with the H-D source. Turn on a fan pointed 
at the source lamp. Turn on the source and align the optics as 
was done before. Keep accurate records of your calibration work 
in your lab book:  If you have been very careful to use the optical 
track, taking notes where the lens and source should be in all 
dimensions, then you will not have to start at “square zero.”  You 
should be able to get over 400 microvolts on the 6561 Angstrom 
Hydrogen line with 15µ slits. 
 
 
 
 
 
 
 
The combination of the much lower intensity H-D source and the smaller 15µ slits allows much less 
light to reach the exit slit and the photodiode sensor. Use the dispersion curve to correct the 
wavelength values. The source contains both Hydrogen and Deuterium, so the Balmer Series lines 
for both will be found. H and D Balmer lines are close together, but the monochromator can resolve 
them with the 15µ slits. Read about resolving power in Melissinos and the useful posting on 
grating physics on the 122 web page for this experiment and the link on p10 of this Guide. 
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The chart recorder output, below, shows two of the Balmer Series lines for Hydrogen and 
Deuterium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Physics 122 Lab, Balmer Series Experiment 

2013 v1                                                              Page 24 of 27 

Appendix 

 

 

Monochromator Details     Page 24-30 
 

 

 

Gas Discharge Tube Details    Page 31 - 33 
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